Package 'ICDS'

Title: Identification of Cancer Dysfunctional Subpathway with Omics Data
Description: Identify Cancer Dysfunctional Sub-pathway by integrating gene expression, DNA methylation and copy number variation, and pathway topological information. 1)We firstly calculate the gene risk scores by integrating three kinds of data: DNA methylation, copy number variation, and gene expression. 2)Secondly, we perform a greedy search algorithm to identify the key dysfunctional sub-pathways within the pathways for which the discriminative scores were locally maximal. 3)Finally, the permutation test was used to calculate statistical significance level for these key dysfunctional sub-pathways.
Authors: Junwei Han [cre], Baotong Zheng [aut], Siyao Liu [ctb]
Maintainer: Junwei Han <[email protected]>
License: GPL (>= 2)
Version: 0.1.3
Built: 2024-10-31 05:07:24 UTC
Source: https://github.com/hanjunwei-lab/icds

Help Index


Identification of Cancer Dysfunctional Subpathway by integrating DNA methylation, copy number variation, and gene expression data

Description

Identify Cancer Dysfunctional Subpathway by integrating gene expression, DNA methylation and copy number variation, and pathway topological information. 1)We firstly calculate the gene risk scores by integrating three kinds of data: DNA methylation, copy number variation, and gene expression. 2)Secondly, we perform a greedy search algorithm to identify the key dysfunctional subpathways within the pathways for which the discriminative scores were locally maximal. 3)Finally, the permutation test was used to calculate statistical significance level for these key dysfunctional subpathways.

Author(s)

Maintainer: Junwei Han [email protected]

Authors:

Other contributors:


combinep_three

Description

'combinep_three' combine three kinds of p-values,then,calculate z-score for them.

Usage

combinep_three(p1, p2, p3)

Arguments

p1

the p-values or corrected p-values

p2

the p-values or corrected p-values

p3

the p-values or corrected p-values

Value

A numeric vector of z_scores

Examples

exp.p<-GetExampleData("exp.p")
meth.p<-GetExampleData("meth.p")
cnv.p<-GetExampleData("cnv.p")
combinep_three(exp.p,meth.p,cnv.p)

combinep_two

Description

'combinep_two' combine two kinds of p-values,then,calculate z-score for them.

Usage

combinep_two(p1, p2)

Arguments

p1

A numeric vector of p-values or corrected p-values

p2

A numeric vector of p-values or corrected p-values

Value

A numeric vector of z_scores

Examples

exp.p<-GetExampleData("exp.p")
meth.p<-GetExampleData("meth.p")
combinep_two(exp.p,meth.p)

coverp2zscore

Description

'coverp2zscore' calculate z-scores for p-values

Usage

coverp2zscore(pdata)

Arguments

pdata

A numeric vector of p-values or corrected p-values

Value

A numeric vector of z_scores

Examples

exp.p<-GetExampleData("exp.p")
meth.p<-GetExampleData("meth.p")
cnv.p<-GetExampleData("cnv.p")
coverp2zscore(exp.p)
coverp2zscore(meth.p)
coverp2zscore(cnv.p)

The variables in the environment include an example expression profile,an methylation profile,an copy number variation data,amplified genes,deleted genes,A numeric vector of z_scores,p-values,A vector of 0/1s, indicating the class of samples,interested subpathways,Optimized subpathway,and the statistical significance p value and FDR for these optimal subpathways

Description

Identify Cancer Dysfunctional Subpathway by integrating gene expression, DNA methylation and copy number variation, and pathway topological information. 1)We firstly calculate the gene risk scores by integrating three kinds of data: DNA methylation, copy number variation, and gene expression. 2)Secondly, we perform a greedy search algorithm to identify the key dysfunctional subpathways within the pathways for which the discriminative scores were locally maximal. 3)Finally, the permutation test was used to calculate statistical significance level for these key dysfunctional subpathways.

Format

An environment variable

Details

The environment variable includes the variable exp_data, meth_data,cnv_data,amp_gene,del_gene,zzz,exp.p,meth.p,cnv.p,label1,label2,subpathdata,opt_subpathways

Author(s)

Junwei Han[email protected],Baotong Zheng[email protected],Siyao Liu [email protected]


FindSubPath

Description

'FindSubPath' uses a greedy search algorithm to search for key subpathways in each entire pathway.

Usage

FindSubPath(
  zz,
  Pathway = "kegg",
  delta = 0.05,
  seed_p = 0.05,
  min.size = 5,
  out.F = FALSE,
  out.file = "Subpath.txt"
)

Arguments

zz

A numeric vector of z_scores.

Pathway

The name of the pathway database.

delta

Diffusion coefficient in each step of searching subpath.

seed_p

Define gene whose p-value smaller than seed_p as seed gene.

min.size

The smallest size of subpathways.

out.F

Logical,tell if output subpathways.

out.file

file name of subpathways.

Value

Key dysfunctional subpathways in each pathway, in which the risk score of the genes were significantly higher.

Examples

require(graphite)
zz<-GetExampleData("zzz")
k<-FindSubPath(zz)

getCnvp

Description

'getCnvp' perform t-test on copy number variation data

Usage

getCnvp(
  exp_data,
  cnv_data,
  amp_gene,
  del_gene,
  p.adjust = TRUE,
  method = "fdr"
)

Arguments

exp_data

A data frame

cnv_data

Copy number variation data

amp_gene

A vector of strings, the IDs of amplified genes.

del_gene

A vector of strings, the IDs of deleted genes.

p.adjust

Logical,tell if returns corrected p-values

method

Correction method,which can be one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY",

Details

cnv_data is TCGA level4 data.if p.adjust=TRUE,return corrected p-values,if p.adjust=FALSE,return p-values

Value

A numeric vector of p-values or corrected p-values

Examples

exp_data<-GetExampleData("exp_data")
meth_data<-GetExampleData("meth_data")
cnv_data<-GetExampleData("cnv_data")
amp_gene<-GetExampleData("amp_gene")
del_gene<-GetExampleData(("del_gene"))
getCnvp(exp_data,cnv_data,amp_gene,del_gene,p.adjust=FALSE,method="fdr")

Get the example data

Description

Get the example data of test package for litte trials.

Usage

GetExampleData(exampleData)

Arguments

exampleData

A character, should be one of "exp_data", "meth_data", "cnv_data", "amp_gene", "del_gene" ,"label1","label2","zz","exp.p","meth.p","cnv.p"and "pathdata".

Details

The function getExampleData(ExampleData = "exp.p)") obtains a vector of lncRNAs confirmed to be related with breast cancer. The function getExampleData(ExampleData = "Profile") obtains the expression pr

References

Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S. et al. (2005) Gene set enrichment analysis: a knowledgebased approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A, 102, 15545-15550.


getExpp

Description

'getExpp' perform t-test on Expression profile data

Usage

getExpp(exp_data, label, p.adjust = TRUE, method = "fdr")

Arguments

exp_data

A data frame, the expression profile to calculate p-value for each gene, the rownames should be the symbol of genes.

label

A vector of 0/1s, indicating the class of samples in the expression profile, 0 represents case, 1 represents control.

p.adjust

Logical,tell if returns corrected p-values

method

Correction method,which can be one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY",

Details

For a given expression profile of two conditions, ICDS package provide t-test method to calculate p-values or corrected p-values(if p.adjust=TRUE,return corrected p-values,if p.adjust=FALSE,return p-values.) for each genes. The row of the expression profile should be gene symbols and the column of the expression profile should be names of samples. Samples should be under two conditions and the label should be given as 0 and 1.

Value

A numeric vector of p-values or corrected p-values

Examples

profile<-GetExampleData("exp_data")
label<-GetExampleData("label1")
getExpp(profile,label,p.adjust=FALSE)

getMethp

Description

'getMethp' perform t-test on Methylation profile data

Usage

getMethp(meth_data, label, p.adjust = TRUE, method = "fdr")

Arguments

meth_data

A data frame, the Methylation profile to calculate p-value for each gene, the rownames should be the symbol of genes.

label

label A vector of 0/1s, indicating the class of samples in the Methylation profile, 0 represents case, 1 represents control.

p.adjust

Logical,tell if returns corrected p-values

method

Correction method,which can be one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY",

Details

For a given Methylation profile of two conditions, ICDS package provide t-test method to calculate p-values or corrected p-values(if p.adjust=TRUE,return corrected p-values,if p.adjust=FALSE,return p-values.) for each genes. The row of the Methylation profile should be gene symbols and the column of the Methylation profile should be names of samples. Samples should be under two conditions and the label should be given as 0 and 1.

Value

A numeric vector of p-values or corrected p-values

Examples

profile<-GetExampleData("meth_data")
label<-GetExampleData("label2")
getMethp(profile,label,p.adjust=FALSE)

opt_subpath

Description

'opt_subpath' Optimize interested subpathways.If the number of genes shared by the two pathways accounted for more than the Overlap ratio of each pathway genes,then combine two pathways.

Usage

opt_subpath(subpathdata, zz, overlap = 0.6)

Arguments

subpathdata

interested subpathways

zz

a vector of z-scores

overlap

Overlap ratio of each two pathway genes

Value

Optimized subpathway:the number of genes shared by any two pathways accounted for less than the Overlap ratio of each pathway genes.

Examples

zz<-GetExampleData("zzz")
subpathdata<-GetExampleData("subpathdata")
optsubpath<-opt_subpath(subpathdata,zz,overlap=0.6)

Permutation

Description

the permutation test method 1 and method 2 were used to calculate the statistical significance level for these optimal subpathways.

Usage

Permutation(
  subpathwayz,
  zz,
  nperm1 = 1000,
  method1 = TRUE,
  nperm2 = 1000,
  method2 = FALSE
)

Arguments

subpathwayz

Optimize intersted subpathways

zz

a vector of z-scores

nperm1

times of permutation to perform use method1

method1

permutation analysis method1

nperm2

times of permutation to perform use method2

method2

permutation analysis method2

Value

the statistical significance p value and FDR for these optimal subpathways

Examples

require(graphite)
keysubpathways<-GetExampleData("keysubpathways")
zzz<-GetExampleData("zzz")
Permutation(keysubpathways,zzz,nperm1=10,method1=TRUE,nperm2=10,method2=FALSE)

PlotSubpathway

Description

PlotSubpathway:plot a network graph when user input a list of gene

Usage

PlotSubpathway(
  subpID,
  pathway.name,
  zz,
  Pathway = "kegg",
  layout = layout.fruchterman.reingold
)

Arguments

subpID

gene list of a interested subpathway

pathway.name

name of the interested subpathway

zz

z-score of each gene

Pathway

the name of the pathway database

layout

The layout specification(layout_). It must be a call to a layout specification function.

Value

Network graph

Examples

require(graphite)

subpID<-unlist(strsplit("ACSS1/ALDH3B2/ADH1B/ADH1A/ALDH2/DLAT/ACSS2","/"))
pathway.name="Glycolysis / Gluconeogenesis"
zzz<- GetExampleData("zzz")
PlotSubpathway(subpID=subpID,pathway.name=pathway.name,zz=zzz)