Title: | Identification of Prognosis-Related Mutually Exclusive Modules |
---|---|
Description: | A novel tool to identify candidate driver modules for predicting the prognosis of patients by integrating exclusive coverage of mutations with clinical characteristics in cancer. |
Authors: | Junwei Han [aut, cre, cph], Xiangmei Li [aut], Bingyue Pan [aut] |
Maintainer: | Junwei Han <[email protected]> |
License: | GPL (>= 2) |
Version: | 0.1.0 |
Built: | 2024-11-13 04:47:13 UTC |
Source: | https://github.com/cran/ProgModule |
candidate_module, Is the gene set from each local network by greedy algorithm,generated by 'get_candidate_module'.
candidate_module
candidate_module
An object of class list
of length 4.
final_candidate_module, Is the final candidate module by intersecting modules from three protein networks in pairs,generated by 'get_final_candidate_module'.
final_candidate_module
final_candidate_module
An object of class list
of length 4.
The function 'get_candidate_module' is used to search candidate module of each local network using greedy algorithm.
get_candidate_module( local_network, network, freq_matrix, sur, seed, max.size, rate )
get_candidate_module( local_network, network, freq_matrix, sur, seed, max.size, rate )
local_network |
The local networks,generated by 'get_local_network'. |
network |
The maximum connected subnet,extracted by mapping all mutated genes to the PPI network. |
freq_matrix |
The mutations matrix,generated by 'get_mut_status'. |
sur |
A nx2 data frame of samples' survival data,the first line is samples' survival event and the second line is samples' overall survival. |
seed |
The canonical drivers from NCG database, which use as the starting node of the greedy algorithm. |
max.size |
The maximum size of the module,default is 200. |
rate |
The rate of increase in score,default is 0.05. |
candidate module.
#load the data data(local_network) data(mut_status) data(subnet) canonical_drivers<-system.file("extdata","canonical_drivers.txt",package = "ProgModule") seed_gene<-read.table(canonical_drivers,header=FALSE) sur<-system.file("extdata","sur.csv",package = "ProgModule") sur<-read.delim(sur,sep=",",header=TRUE,row.names=1) #perform the function `get_candidate_module`. candidatemodule.example<-get_candidate_module(local_network=local_network,network=subnet, freq_matrix=mut_status,sur=sur,seed=seed_gene[,1],max.size=200,rate=0.05)
#load the data data(local_network) data(mut_status) data(subnet) canonical_drivers<-system.file("extdata","canonical_drivers.txt",package = "ProgModule") seed_gene<-read.table(canonical_drivers,header=FALSE) sur<-system.file("extdata","sur.csv",package = "ProgModule") sur<-read.delim(sur,sep=",",header=TRUE,row.names=1) #perform the function `get_candidate_module`. candidatemodule.example<-get_candidate_module(local_network=local_network,network=subnet, freq_matrix=mut_status,sur=sur,seed=seed_gene[,1],max.size=200,rate=0.05)
The function 'get_final_module' is used to identify the final module.
get_final_module( index, edge, mut_status, sur, seed, cutoff = 0.05, max.size.local = 500, max.size.candidate = 200, rate = 0.05, perm = 1000 )
get_final_module( index, edge, mut_status, sur, seed, cutoff = 0.05, max.size.local = 500, max.size.candidate = 200, rate = 0.05, perm = 1000 )
index |
A index file of PPI networks,downloaded from http://compbio-research.cs.brown.edu/pancancer/hotnet2/. |
edge |
The edge lists of PPI networks,downloaded from http://compbio-research.cs.brown.edu/pancancer/hotnet2/. |
mut_status |
The mutations matrix,generated by 'get_mut_status'. |
sur |
A nx2 data frame of samples' survival data,the first line is samples' survival event and the second line is samples' overall survival. |
seed |
The canonical drivers from NCG database, which use as the starting node of the greedy algorithm. |
cutoff |
The perturbed p-value cutoff point,default is 0.05. |
max.size.local |
The size of maximum connected local network,default is 500. |
max.size.candidate |
The maximum size of the candidate module,default is 200. |
rate |
The rate of increase in score,default is 0.05. |
perm |
The perturbation number,default is 1000. |
The final module.
#load the data indexdata<-system.file("extdata","hint+hi2012_index_file.txt",package="ProgModule") index<-read.table(indexdata,sep="\t",header=FALSE) edgedata<-system.file("extdata","hint+hi2012_edge_file.txt",package="ProgModule") edge<-read.table(edgedata,sep="\t",header=FALSE) data(mut_status) sur<-system.file("extdata","sur.csv",package ="ProgModule") sur<-read.delim(sur,sep=",",header=TRUE,row.names=1) canonical_drivers<-system.file("extdata","canonical_drivers.txt",package="ProgModule") seed_gene<-read.table(canonical_drivers,header=FALSE) #perform the function `get_final_module`. finalmodule.example<-get_final_module(index,edge,mut_status,sur,seed=seed_gene, cutoff=0.05,max.size.local=500,max.size.candidate=200,rate=0.05,perm=100)
#load the data indexdata<-system.file("extdata","hint+hi2012_index_file.txt",package="ProgModule") index<-read.table(indexdata,sep="\t",header=FALSE) edgedata<-system.file("extdata","hint+hi2012_edge_file.txt",package="ProgModule") edge<-read.table(edgedata,sep="\t",header=FALSE) data(mut_status) sur<-system.file("extdata","sur.csv",package ="ProgModule") sur<-read.delim(sur,sep=",",header=TRUE,row.names=1) canonical_drivers<-system.file("extdata","canonical_drivers.txt",package="ProgModule") seed_gene<-read.table(canonical_drivers,header=FALSE) #perform the function `get_final_module`. finalmodule.example<-get_final_module(index,edge,mut_status,sur,seed=seed_gene, cutoff=0.05,max.size.local=500,max.size.candidate=200,rate=0.05,perm=100)
The function 'get_local_network' is used to search local network of each gene by breadth-first algorithm.
get_local_network(network, freq_matrix, max.size = 500)
get_local_network(network, freq_matrix, max.size = 500)
network |
The PPI network. |
freq_matrix |
The mutations matrix,generated by 'get_mut_status'. |
max.size |
The size of maximum connected local network,default is 500. |
local nerwork.
#load the data data(mut_status) data(subnet) #perform the function `get_local_network`. localnetwork.example<-get_local_network(network=subnet,freq_matrix=mut_status,max.size=500)
#load the data data(mut_status) data(subnet) #perform the function `get_local_network`. localnetwork.example<-get_local_network(network=subnet,freq_matrix=mut_status,max.size=500)
Load the data in MAF format and draws an lollipopPlot.
get_lollipopPlot( maf, gene, AACol = NULL, labelPos = NULL, labPosSize = 0.9, showMutationRate = TRUE, showDomainLabel = TRUE, cBioPortal = FALSE, refSeqID = NULL, proteinID = NULL, roundedRect = TRUE, repel = FALSE, collapsePosLabel = TRUE, showLegend = TRUE, legendTxtSize = 0.8, labPosAngle = 0, domainLabelSize = 0.8, axisTextSize = c(1, 1), printCount = FALSE, colors = NULL, domainAlpha = 1, domainBorderCol = "black", bgBorderCol = "black", labelOnlyUniqueDoamins = TRUE, defaultYaxis = FALSE, titleSize = c(1.2, 1), pointSize = 1.5 )
get_lollipopPlot( maf, gene, AACol = NULL, labelPos = NULL, labPosSize = 0.9, showMutationRate = TRUE, showDomainLabel = TRUE, cBioPortal = FALSE, refSeqID = NULL, proteinID = NULL, roundedRect = TRUE, repel = FALSE, collapsePosLabel = TRUE, showLegend = TRUE, legendTxtSize = 0.8, labPosAngle = 0, domainLabelSize = 0.8, axisTextSize = c(1, 1), printCount = FALSE, colors = NULL, domainAlpha = 1, domainBorderCol = "black", bgBorderCol = "black", labelOnlyUniqueDoamins = TRUE, defaultYaxis = FALSE, titleSize = c(1.2, 1), pointSize = 1.5 )
maf |
The patients' somatic mutation data, which in MAF format. |
gene |
Modular gene from final_candidate_module,generated by 'get_final_candidate_module'. |
AACol , labelPos , labPosSize , showMutationRate , showDomainLabel , cBioPortal , refSeqID , proteinID , roundedRect , repel , collapsePosLabel , showLegend , legendTxtSize , labPosAngle , domainLabelSize , axisTextSize , printCount , colors , domainAlpha , domainBorderCol , bgBorderCol , labelOnlyUniqueDoamins , defaultYaxis , titleSize , pointSize
|
see |
No return value
#load the data. maffile<-system.file("extdata","maffile.maf",package="ProgModule") #draw an lollipopPlot get_lollipopPlot(maf=maffile,gene="TP53")
#load the data. maffile<-system.file("extdata","maffile.maf",package="ProgModule") #draw an lollipopPlot get_lollipopPlot(maf=maffile,gene="TP53")
The function 'get_mut_status' uses to convert MAF file into mutation matrix.
get_mut_status(mutvariant, nonsynonymous = TRUE)
get_mut_status(mutvariant, nonsynonymous = TRUE)
mutvariant |
A nx3 data frame of patients' somatic mutation data,the first line is gene symbol,the second line is sample ID and the third line is mutation classification. |
nonsynonymous |
Logical, tell if extract the non-synonymous somatic mutations (nonsense mutation, missense mutation, frame-shif indels, splice site, nonstop mutation, translation start site, inframe indels). |
A binary mutations matrix, in which 1 represents that a particular gene has mutated in a particular sample, and 0 represents that gene has no mutation in a particular sample.
maf<-system.file("extdata","maffile.maf",package = "ProgModule") maf_data<-read.delim(maf) mutvariant<-maf_data[,c("Hugo_Symbol","Tumor_Sample_Barcode","Variant_Classification")] #perform the function `get_mut_status`. mut_status.example<-get_mut_status(mutvariant,nonsynonymous = TRUE)
maf<-system.file("extdata","maffile.maf",package = "ProgModule") maf_data<-read.delim(maf) mutvariant<-maf_data[,c("Hugo_Symbol","Tumor_Sample_Barcode","Variant_Classification")] #perform the function `get_mut_status`. mut_status.example<-get_mut_status(mutvariant,nonsynonymous = TRUE)
The function 'get_mut_survivalresult' uses to draw the Kaplan-Meier survival curve based on the mutated status of candidate module.
get_mut_survivalresult(module, freq_matrix, sur)
get_mut_survivalresult(module, freq_matrix, sur)
module |
The gene module,generated by 'get_final_candidate_module'. |
freq_matrix |
The mutations matrix,generated by 'get_mut_status'. |
sur |
A nx2 data frame of samples' survival data,the first line is samples' survival event and the second line is samples' overall survival. |
No return value
#load the data. data(mut_status) sur<-system.file("extdata","sur.csv",package="ProgModule") sur<-read.delim(sur,sep=",",header=TRUE,row.names=1) data(final_candidate_module) #perform the function `get_mut_survivalresult`. get_mut_survivalresult(module=final_candidate_module,freq_matrix=mut_status,sur)
#load the data. data(mut_status) sur<-system.file("extdata","sur.csv",package="ProgModule") sur<-read.delim(sur,sep=",",header=TRUE,row.names=1) data(final_candidate_module) #perform the function `get_mut_survivalresult`. get_mut_survivalresult(module=final_candidate_module,freq_matrix=mut_status,sur)
The function 'get_mutual_module' is used to determine if neighbor genes should be added to the module by calculating the score.
get_mutual_module( module, net, freq_matrix, sur, module_sig, univarCox_result, rate )
get_mutual_module( module, net, freq_matrix, sur, module_sig, univarCox_result, rate )
module |
The Original modular gene set. |
net |
The local network extracted from PPI network. |
freq_matrix |
The mutations matrix,generated by 'get_mut_status'. |
sur |
A nx2 data frame of samples' survival data,the first line is samples' survival event and the second line is samples' overall survival. |
module_sig |
A label for whether the module is a risk factor or a protective factor for survival. |
univarCox_result |
The result of Cox univariate analysis,generated by 'get_univarCox_result'. |
rate |
The rate of increase in score,default is 0.05. |
The mutually exclusive module.
#load the data data(mut_status) sur<-system.file("extdata","sur.csv",package = "ProgModule") sur<-read.delim(sur,sep=",",header=TRUE,row.names = 1) data(net) data(module) data(univarCox_result) #perform the function `get_mutual_module`. mutuallyexclusivemodule.example<-get_mutual_module(module,net,freq_matrix=mut_status,sur, module_sig="risk",univarCox_result,rate=0.05)
#load the data data(mut_status) sur<-system.file("extdata","sur.csv",package = "ProgModule") sur<-read.delim(sur,sep=",",header=TRUE,row.names = 1) data(net) data(module) data(univarCox_result) #perform the function `get_mutual_module`. mutuallyexclusivemodule.example<-get_mutual_module(module,net,freq_matrix=mut_status,sur, module_sig="risk",univarCox_result,rate=0.05)
Load the data in MAF format and draws a waterfall plot of mutated genes involved in the module.
get_oncoplots( maf, genes, removeNonMutated = TRUE, top = 20, minMut = NULL, altered = FALSE, drawRowBar = TRUE, drawColBar = TRUE, leftBarData = NULL, leftBarLims = NULL, rightBarData = NULL, rightBarLims = NULL, topBarData = NULL, logColBar = FALSE, includeColBarCN = TRUE, clinicalFeatures = NULL, annotationColor = NULL, annotationDat = NULL, pathways = NULL, path_order = NULL, selectedPathways = NULL, pwLineCol = "#535c68", pwLineWd = 1, draw_titv = FALSE, titv_col = NULL, showTumorSampleBarcodes = FALSE, barcode_mar = 4, barcodeSrt = 90, gene_mar = 5, anno_height = 1, legend_height = 4, sortByAnnotation = FALSE, groupAnnotationBySize = TRUE, annotationOrder = NULL, sortByMutation = FALSE, keepGeneOrder = FALSE, GeneOrderSort = TRUE, sampleOrder = NULL, additionalFeature = NULL, additionalFeaturePch = 20, additionalFeatureCol = "gray70", additionalFeatureCex = 0.9, genesToIgnore = NULL, fill = TRUE, cohortSize = NULL, colors = NULL, cBioPortal = FALSE, bgCol = "#CCCCCC", borderCol = "white", annoBorderCol = NA, numericAnnoCol = NULL, drawBox = FALSE, fontSize = 0.8, SampleNamefontSize = 1, titleFontSize = 1.5, legendFontSize = 1.2, annotationFontSize = 1.2, sepwd_genes = 0.5, sepwd_samples = 0.25, writeMatrix = FALSE, colbar_pathway = FALSE, showTitle = TRUE, titleText = NULL, showPct = TRUE )
get_oncoplots( maf, genes, removeNonMutated = TRUE, top = 20, minMut = NULL, altered = FALSE, drawRowBar = TRUE, drawColBar = TRUE, leftBarData = NULL, leftBarLims = NULL, rightBarData = NULL, rightBarLims = NULL, topBarData = NULL, logColBar = FALSE, includeColBarCN = TRUE, clinicalFeatures = NULL, annotationColor = NULL, annotationDat = NULL, pathways = NULL, path_order = NULL, selectedPathways = NULL, pwLineCol = "#535c68", pwLineWd = 1, draw_titv = FALSE, titv_col = NULL, showTumorSampleBarcodes = FALSE, barcode_mar = 4, barcodeSrt = 90, gene_mar = 5, anno_height = 1, legend_height = 4, sortByAnnotation = FALSE, groupAnnotationBySize = TRUE, annotationOrder = NULL, sortByMutation = FALSE, keepGeneOrder = FALSE, GeneOrderSort = TRUE, sampleOrder = NULL, additionalFeature = NULL, additionalFeaturePch = 20, additionalFeatureCol = "gray70", additionalFeatureCex = 0.9, genesToIgnore = NULL, fill = TRUE, cohortSize = NULL, colors = NULL, cBioPortal = FALSE, bgCol = "#CCCCCC", borderCol = "white", annoBorderCol = NA, numericAnnoCol = NULL, drawBox = FALSE, fontSize = 0.8, SampleNamefontSize = 1, titleFontSize = 1.5, legendFontSize = 1.2, annotationFontSize = 1.2, sepwd_genes = 0.5, sepwd_samples = 0.25, writeMatrix = FALSE, colbar_pathway = FALSE, showTitle = TRUE, titleText = NULL, showPct = TRUE )
maf |
The patients' somatic mutation data, which in MAF format. |
genes |
Modular gene set from final_candidate_module,generated by 'get_final_candidate_module'. |
removeNonMutated , top , minMut , altered , drawRowBar , drawColBar , leftBarData , leftBarLims , rightBarData , rightBarLims , topBarData , logColBar , includeColBarCN , clinicalFeatures , annotationColor , annotationDat , pathways , path_order , selectedPathways , pwLineCol , pwLineWd , draw_titv , titv_col , showTumorSampleBarcodes , barcode_mar , barcodeSrt , gene_mar , anno_height , legend_height , sortByAnnotation , groupAnnotationBySize , annotationOrder , sortByMutation , keepGeneOrder , GeneOrderSort , sampleOrder , additionalFeature , additionalFeaturePch , additionalFeatureCol , additionalFeatureCex , genesToIgnore , fill , cohortSize , colors , cBioPortal , bgCol , borderCol , annoBorderCol , numericAnnoCol , drawBox , fontSize , SampleNamefontSize , titleFontSize , legendFontSize , annotationFontSize , sepwd_genes , sepwd_samples , writeMatrix , colbar_pathway , showTitle , titleText , showPct
|
see |
No return value
#load the data. maffile<-system.file("extdata","maffile.maf",package="ProgModule") data(final_candidate_module) #draw an oncoplot get_oncoplots(maf=maffile,genes=final_candidate_module[[1]])
#load the data. maffile<-system.file("extdata","maffile.maf",package="ProgModule") data(final_candidate_module) #draw an oncoplot get_oncoplots(maf=maffile,genes=final_candidate_module[[1]])
Performs Pair-wise Fisher's Exact test to detect mutually exclusive or co-occuring events.
get_plotMutInteract( module = NULL, genes = NULL, freq_matrix, pvalue = c(0.05, 0.01), returnAll = TRUE, fontSize = 0.8, showSigSymbols = TRUE, showCounts = FALSE, countStats = "all", countType = "all", countsFontSize = 0.8, countsFontColor = "black", colPal = "BrBG", nShiftSymbols = 5, sigSymbolsSize = 2, sigSymbolsFontSize = 0.9, pvSymbols = c(46, 42), limitColorBreaks = TRUE )
get_plotMutInteract( module = NULL, genes = NULL, freq_matrix, pvalue = c(0.05, 0.01), returnAll = TRUE, fontSize = 0.8, showSigSymbols = TRUE, showCounts = FALSE, countStats = "all", countType = "all", countsFontSize = 0.8, countsFontColor = "black", colPal = "BrBG", nShiftSymbols = 5, sigSymbolsSize = 2, sigSymbolsFontSize = 0.9, pvSymbols = c(46, 42), limitColorBreaks = TRUE )
module |
The gene module,generated by 'get_final_candidate_module'. |
genes |
The modular gene,generated by 'get_final_candidate_module'. |
freq_matrix |
The mutations matrix,generated by 'get_mut_status'. |
pvalue , returnAll , fontSize , showSigSymbols , showCounts , countStats , countType , countsFontSize , countsFontColor , colPal , nShiftSymbols , sigSymbolsSize , sigSymbolsFontSize , pvSymbols , limitColorBreaks
|
see |
No return value
#load the data. data(plotMutInteract_moduledata,plotMutInteract_mutdata) #draw an plotMutInteract of genes get_plotMutInteract(genes=unique(unlist(plotMutInteract_moduledata)), freq_matrix=plotMutInteract_mutdata) #draw an plotMutInteract of modules get_plotMutInteract(module=plotMutInteract_moduledata, freq_matrix=plotMutInteract_mutdata)
#load the data. data(plotMutInteract_moduledata,plotMutInteract_mutdata) #draw an plotMutInteract of genes get_plotMutInteract(genes=unique(unlist(plotMutInteract_moduledata)), freq_matrix=plotMutInteract_mutdata) #draw an plotMutInteract of modules get_plotMutInteract(module=plotMutInteract_moduledata, freq_matrix=plotMutInteract_mutdata)
The function 'get_Pvalue_S' is used to calculate the perturbed p-value.
get_Pvalue_S(module, freq_matrix, sur, perms = 1000, local_network)
get_Pvalue_S(module, freq_matrix, sur, perms = 1000, local_network)
module |
The candidate module,generated by 'get_candidate_module'. |
freq_matrix |
The mutations matrix,generated by 'get_mut_status'. |
sur |
A nx2 data frame of samples' survival data,the first line is samples' survival event and the second line is samples' overall survival. |
perms |
The perturbation number,default is 1000. |
local_network |
The local network gene sets,generated by 'get_local_network'. |
Perturbed p-value.
#load the data data(local_network) data(mut_status) data(candidate_module) sur<-system.file("extdata","sur.csv",package = "ProgModule") sur<-read.delim(sur,sep=",",header=TRUE,row.names = 1) #perform the function `get_Pvalue_S`. turbulence.example<-get_Pvalue_S(module=candidate_module,freq_matrix=mut_status, sur=sur,perms=100,local_network)
#load the data data(local_network) data(mut_status) data(candidate_module) sur<-system.file("extdata","sur.csv",package = "ProgModule") sur<-read.delim(sur,sep=",",header=TRUE,row.names = 1) #perform the function `get_Pvalue_S`. turbulence.example<-get_Pvalue_S(module=candidate_module,freq_matrix=mut_status, sur=sur,perms=100,local_network)
The function 'get_univarCox_result' is used to calculate the result of Cox univariate analysis.
get_univarCox_result(freq_matrix, sur)
get_univarCox_result(freq_matrix, sur)
freq_matrix |
The mutations matrix,generated by 'get_mut_status'. |
sur |
A nx2 data frame of samples' survival data,the first line is samples' survival event and the second line is samples' overall survival. |
The result of Cox univariate analysis.
#load the data data(mut_status) sur<-system.file("extdata","sur.csv",package ="ProgModule") sur<-read.delim(sur,sep=",",header=TRUE,row.names=1) #perform the function `get_univarCox_result`. univarCoxresult.example<-get_univarCox_result(freq_matrix=mut_status,sur)
#load the data data(mut_status) sur<-system.file("extdata","sur.csv",package ="ProgModule") sur<-read.delim(sur,sep=",",header=TRUE,row.names=1) #perform the function `get_univarCox_result`. univarCoxresult.example<-get_univarCox_result(freq_matrix=mut_status,sur)
local_network, the local network gene set of each gene by breadth-first algorithm,,generated by 'get_local_network'.
local_network
local_network
An object of class list
of length 4.
maf_data, The patients' somatic mutation data, which in MAF format.
maf_data
maf_data
An object of class data.frame
with 3745 rows and 10 columns.
The function ‘MI' is used to calculate the mutual information score between samples’ survival status and mutation status.
MI(mylist1, mylist2)
MI(mylist1, mylist2)
mylist1 |
Is input a list of samples' survival status. |
mylist2 |
Is input a list of samples' mutation status. |
The mutual information score
#load the data data(mut_status) sur<-system.file("extdata","sur.csv",package = "ProgModule") sur<-read.delim(sur,sep=",",header=TRUE,row.names = 1) #perform the function 'MI' mut_matrix<-MI(mylist1 = as.numeric(mut_status[1,]),mylist2 = sur[,1])
#load the data data(mut_status) sur<-system.file("extdata","sur.csv",package = "ProgModule") sur<-read.delim(sur,sep=",",header=TRUE,row.names = 1) #perform the function 'MI' mut_matrix<-MI(mylist1 = as.numeric(mut_status[1,]),mylist2 = sur[,1])
module, Original modular gene set.
module
module
An object of class character
of length 1.
mut_status, the mutations matrix,generated by 'get_mut_status'.
mut_status
mut_status
An object of class matrix
(inherits from array
) with 338 rows and 331 columns.
net, Is a local network extracted from the ppi network.
net
net
An object of class igraph
of length 76.
The data use for drawing mutually exclusive and co-occurrence plots.
plotMutInteract_moduledata
plotMutInteract_moduledata
An object of class list
of length 7.
The data use for drawing mutually exclusive and co-occurrence plots.
plotMutInteract_mutdata
plotMutInteract_mutdata
An object of class matrix
(inherits from array
) with 89 rows and 430 columns.
subnet, Is a maximum connected subnet,extracted by mapping all genes to the ppi network.
subnet
subnet
An object of class igraph
of length 1624.
The result of Cox univariate analysis,generated by 'get_univarCox_result'.
univarCox_result
univarCox_result
An object of class numeric
of length 8103.